On Hosoya Polynomial and Subsequent Indices of C4C8(R) and C4C8(S) Nanosheets

نویسندگان

چکیده

Chemical structures are mathematically modeled using chemical graphs. The graph invariants including algebraic polynomials and topological indices related to the structure of molecules. Hosoya polynomial is a distance based closed form several indices. This article devoted compute two different atomic configurations (C4C8(R) C4C8(S)) C4C8 Carbon Nanosheets. nanosheets most stable, flexible uniform thickness admit vast range applications. used calculate Wiener, hyper Wiener Tratch–Stankevitch–Zafirov Indices. These play their part in determining quantitative property relationship (QSPR) activity (QSAR) structures. three dimensional presentation leads result that though formula for both sheets same, yet they possess Polynomials presenting distinct QSPR QSAR corresponding configuration.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

effect of seed priming and irrigation regimes on yield,yield components and quality of safflowers cultivars

این مطالعه در سال 1386-87 در آزمایشگاه و مزرعه پژوهشی دانشگاه صنعتی اصفهان به منظور تعیین مناسب ترین تیمار بذری و ارزیابی اثر پرایمینگ بر روی سه رقم گلرنگ تحت سه رژیم آبیاری انجام گرفت. برخی از مطالعات اثرات سودمند پرایمینگ بذر را بر روی گیاهان مختلف بررسی کرده اند اما در حال حاضر اطلاعات کمی در مورد خصوصیات مربوط به جوانه زنی، مراحل نموی، عملکرد و خصوصیات کمی و کیفی بذور تیمار شده ژنوتیپ های م...

On the Roots of Hosoya Polynomial of a Graph

Let G = (V, E) be a simple graph. Hosoya polynomial of G is d(u,v) H(G, x) = {u,v}V(G)x , where, d(u ,v) denotes the distance between vertices u and v. As is the case with other graph polynomials, such as chromatic, independence and domination polynomial, it is natural to study the roots of Hosoya polynomial of a graph. In this paper we study the roots of Hosoya polynomials of some specific g...

متن کامل

Some New Results On the Hosoya Polynomial of Graph Operations

The Wiener index is a graph invariant that has found extensive application in chemistry. In addition to that a generating function, which was called the Wiener polynomial, who’s derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in [The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959969] attained what graph operations do to the Wiene...

متن کامل

Hosoya Indices of Bicyclic Graphs

Given a molecular graph G, the Hosoya index Z(G) of G is defined as the total number of the matchings of the graph. Let Bn denote the set of bicyclic graphs on n vertices. In this paper, the minimal, the second-, the third-, the fourth-, and the fifth-minimal Hosoya indices of bicyclic graphs in the set Bn are characterized.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2022

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym14071349